MULTI-FREY Q-CURVES AND THE DIOPHANTINE EQUATION a + b = c

نویسندگان

  • MICHAEL A. BENNETT
  • IMIN CHEN
چکیده

We show that the equation a2 +b6 = cn has no nontrivial positive integer solutions with (a, b) = 1 via a combination of techniques based upon the modularity of Galois representations attached to certain Q -curves, corresponding surjectivity results of Ellenberg for these representations, and extensions of multi-Frey curve arguments of Siksek.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shifted powers in binary recurrence sequences

Let {uk} be a Lucas sequence. A standard technique for determining the perfect powers in the sequence {uk} combines bounds coming from linear forms in logarithms with local information obtained via Frey curves and modularity. The key to this approach is the fact that the equation uk = xn can be translated into a ternary equation of the form ay2 = bx2n + c (with a, b, c ∈ Z) for which Frey curve...

متن کامل

Solving Fermat-type equations x + dy = z via modular Q-curves over polyquadratic fields

We solve the diophantine equations x + dy = zp for d = 2 and d = 3 and any prime p > 557. The method consists in generalizing the ideas applied by Frey, Ribet and Wiles in the solution of Fermat’s Last Theorem, and by Ellenberg in the solution of the equation x + y = zp, and we use Q-curves, modular forms and inner twists. In principle our method can be applied to solve this type of equations f...

متن کامل

A Multi-frey Approach to Some Multi-parameter Families of Diophantine Equations

We solve several multi-parameter families of binomial Thue equations of arbitrary degree; for example, we solve the equation 5x − 23y = ±1, in non-zero integers x, y and positive integers u, r, s and n ≥ 3. Our approach uses several Frey curves simultaneously, Galois representations and level-lowering, new lower bounds for linear forms in 3 logarithms due to Mignotte and a famous theorem of Ben...

متن کامل

Solving Fermat-type equations via modular Q-curves over polyquadratic fields

We solve the diophantine equations x + dy = zp for d = 2 and d = 3 and any prime p > 349 and p > 131 respectively. The method consists in generalizing the ideas applied by Frey, Ribet and Wiles in the solution of Fermat’s Last Theorem, and by Ellenberg in the solution of the equation x + y = zp, and we use Q-curves, modular forms and inner twists. In principle our method can be applied to solve...

متن کامل

The equation ...

We show that the Diophantine equation of the title has, for n > 1, no solution in coprime nonzero integers x, y and z. Our proof relies upon Frey curves and related results on the modularity of Galois representations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011